addin irmem.c
authorjordan@hack_attack <jordanlavatai@gmail.com>
Thu, 29 Sep 2016 16:15:34 +0000 (09:15 -0700)
committerjordan@hack_attack <jordanlavatai@gmail.com>
Thu, 29 Sep 2016 16:15:34 +0000 (09:15 -0700)
src/apc/irmem.c [new file with mode: 0644]

diff --git a/src/apc/irmem.c b/src/apc/irmem.c
new file mode 100644 (file)
index 0000000..3b62201
--- /dev/null
@@ -0,0 +1,723 @@
+/*!@file
+  \brief   IR Memory Implementation
+  \details Intermediary memory management
+  \author  Jordan Lavatai
+  \date    Aug 2016
+  ----------------------------------------------------------------------------*/
+#include <errno.h>
+#include <stdio.h>
+#include <stdint.h> //uint64_t
+#include <string.h> //memmove
+#include <stdlib.h> //malloc
+#include <apc/ir.h>
+
+#define CURR_CDAT (*cdat_stackp)
+#define CURR_SET set_list[CURR_CDAT->num_sets]
+#define CURR_ELE ele_list[CURR_CDAT->CURR_SET.num_ele]
+#define PREV_REF (ref_buf[num_refs-1])
+#define CURR_REF (ref_buf[num_refs])
+#define PREV_ODAT (odat_buf[num_odats-1])
+#define CURR_ODAT (odat_buf[num_odats])
+#define CURR_VDAT (vdat_buf[num_vdats])
+#define PREV_VDAT (vdat_buf[num_vdats-1])
+#define CURR_MODEL model_list[CURR_VDAT->num_models]
+#define CURR_LINK (link_buf[num_links])
+#define CURR_POST (post_buf[num_posts])
+
+void
+inc_odat(void);
+void
+inc_vdat(void);
+void
+inc_link(void);
+void
+inc_ref(void);
+void
+ir_init(void);
+void
+malloc_cdat(void);
+
+
+
+/*  General: All information from the directory structure is stored in        */
+/*  five buffers that comprise the IR: cdat_buf, odat_buf, vdat_buf, ref_buf  */
+/*  and link_buf. Each buf corresponds to the data structure that it stores.  */
+/*  The storage techique for all bufs (except cdat) is the same. Each bufs member first */
+/*  populates its struct and then allocates the space for the next member     */
+/*  and increments the buf index. This means that we have to allocate the     */
+/*  very first member of each buf at ir_init(), so that we don't segfault     */
+/*  as the first member attempts to access memory that its previous member    */
+/*  didn't allocate (because it doesnt exist). We access the buf members      */
+/*  through standard array indexing but conceal the tediousness of array      */
+/*  indexing with macros. E.g. without macros, acessing an elements name      */
+/*  member would look like (split up to not go over line char limit):         */
+/*  (*cdat_stackp)->set_list[(*cdat_stackp)->num_sets] */
+/*     .ele_list[(*cdat_stackp)->set_list[(*cdat_stackp->num_sets)].num_ele].name */
+
+/* For cdats in cdat_buf, we allocate the memory for a cdat once a cdat
+   is recognized in the grammar. Cdat_buf is different from the other bufs
+   because cdats have a root cdat that all cdats are a subclass of. This root
+   cdat can have a set_list like other cdats.                                */
+
+/*  Elements: Ele stands for element and has two representations in the IR.   */
+/*  In the cdat_buf eles store their name, cdat_idx (their classes index in   */
+/*  the cdat_buf) and the ref_id (refer to ref ). In the odat_buf, eles store */
+/*  their object data (odat). At output time, the ref_id is dereferenced to   */
+/*  determine the elements odat which is the data that the engine expects     */
+/*  from an element.                                                          */
+
+
+/*  All bufs are of pointers to their respective structs. When a buf is full */
+/*  (number of data structs pointers >= max number of data struct pointers),        */
+/*  we need to allocate a more pointers for that buf. Allocate these       */
+/*  pointers a page at a time (1024 = Page bytes (4096)/bytes per pointer(4))   */
+
+struct ele {
+  char name[32];
+  uint64_t ref_id;
+  int cdat_idx;
+};
+
+/*  Sets: The set is similar to the ele, but it contains a list of its    */
+/*  elements. The set is populated at parse time AFTER the elements are   */
+/*  populated, due to the nature of bottom up parsing.                    */
+
+struct set {
+  char name[32];
+  uint64_t ref_id;
+  int cdat_idx;
+  int num_ele;
+  struct ele ele_list[MAX_ELES];
+};
+
+/*  Cdats: A cdat is a class data structure. Cdats serve as the central       */
+/*  data types of the IR. At output, the cdat_buf is iterated through and     */
+/*  each is written to the output file. For each cdat, sets and element       */
+/*  ref_ids must be dereferenced to determine the odat information. Cdats     */
+/*  contain pointers to their subclasses so that the relationship between     */
+/*  classes can be determined, but the subclasses are not represented inside  */
+/*  of the cdat itself but rather in the subsequent cdats in cdat_buf. We     */
+/*  can determine the number of subclasses (the last index into cdat_buf      */
+/*  that represents a subclass of some arbitrary cdat) each cdat has by       */
+/*  incrementing num_classes during parse time.                               */
+/*  TODO: Should classes point to their parent class?                         */
+
+struct cdat {
+  char name[32];
+  int idx;
+  int num_classes;
+  int num_sets;
+  struct cdat* class_list[MAX_CLASSES];
+  struct set set_list[MAX_SETS];
+};
+
+/* There are an unknown amount of cdats at compile time, so we maintain    */
+/*   a cdat_buf of cdat pointers that can be expanded as needed.           */
+struct cdat* cdat_buf[PTRS_IN_PAGE];
+
+/* The cdat_stack is a stack pointers to cdat pointers, the top of which is
+   the cdat that is currently being parsed. Whenever a new cdat is recognized
+   by the grammar (CLOPEN), a cdat is pushed onto the cdat_stack, and we refer
+   to this cdat through the macro CURR_CDAT. By keeping a cdat_stack, we have
+   access to the current cdat so that the elements and sets can populate themselves
+   in the cdat accordingly. */
+
+struct cdat* cdat_stack[PTRS_IN_PAGE];
+struct cdat** cdat_stackp;
+int num_cdats = 0;
+int curr_max_cdats = PTRS_IN_PAGE;
+
+/* Refs: Each set/ele has a reference to its object data (odat) through a ref_id.
+   Ref_ids are unsigned 64 byte integers that map to the hex values RGBA. During
+   the construction of the directory structure, users can choose a RGBA value for
+   each object that any other object can refer to via links (see link). If a user
+   does not choose an RGBA value, then the object is given one from the system space.
+   We maintain a doubly linked list of refs in the ref_buf at parse time so that
+   links can be resolved after the parsing of the directory structure is complete.
+   For every 16th ref, we create a post so that we can reduce on the search time for
+   a random access. */
+
+struct ref {
+  int type;
+  struct ref* nextref;
+  struct ref* lastref;
+  struct odat* odatp;
+  uint64_t ref_id; //0xFFFFFF->digit
+};
+
+
+/* Like the cdat_buf, ref_buf stores pointers to refs and can
+   increase in size */
+struct ref* ref_buf[PTRS_IN_PAGE];
+int num_refs = 0;
+int curr_max_refs = PTRS_IN_PAGE;
+uint64_t ss_ref_id = 0x00FFFFFF; /* system space for ref_ids */
+
+/* posts for ref_buf */
+struct ref* post_buf[PTRS_IN_PAGE];
+int num_posts = 0;
+int curr_max_posts = PTRS_IN_PAGE;
+
+/* Links: At parse time, a set/ele can include a link in their
+   grammar representation instead of the actual data and this signifies
+   to the APC that that set/ele wishes to use the data of another
+   set/ele, either its video data (vdat) or object data (odat). The link
+   itself contains the type of link it is, the ref_id OR name, and
+   which set/ele created the link. During parse time, links can be made
+   to o/vdats that have yet to be parsed. In order to accomodate for this,
+   we resolve all links AFTER parse time by iterating through the link_buf,
+   finding the ref_id that was stored for some object (if the ref_id exists),
+   and creating a relative pointer from the original object to the data that
+   was linked */
+
+/* Svlinks stand for short vlink, which is a link to a vdat
+   TODO: diff btwn vlink*/
+
+struct svlink {
+  uint64_t ref_id;
+};
+
+/* A vlink is what it sounds like, a link to a vdat
+ TODO: model link? */
+struct vlink {
+  uint64_t ref_id;
+  char anim_name[32];
+};
+
+/* Olinks are links to odats */
+struct olink {
+  uint64_t ref_id;
+};
+
+union link_t {
+  struct olink olink;
+  struct vlink vlink;
+  struct svlink svlink;
+};
+
+struct link {
+  int type; //1 = olink, 2 = vlink, 3 = svlink
+  union link_t link_t;
+  int cdat_idx;
+  int set_idx;
+  int ele_idx;
+};
+
+/* link_buf contains all the links that
+   we encountered during parse time that need
+   to be resolved to an offset at output time.
+   This does not include quad refs, because
+   those are already known to need to be resolved */
+struct link* link_buf[PTRS_IN_PAGE];
+int num_links = 0;
+int curr_max_links = PTRS_IN_PAGE;
+
+
+/* Odats: Odats consist of the object data necessary for
+   each object. Odats are sometimes referred to as archetypes
+   at compile-time, in order to distinguish the difference from
+   a runtime object and a compile-time object.
+   TODO: Need more info about objects at runtime, to described
+         the reasoning behind odat structure at compile-time*/
+
+/* Each set has a quad_list or a list of quads. The quad_list
+   is the ? */
+struct quad {
+  int x, y, z;
+  uint64_t ref_id; //rgba
+};
+
+struct root {
+  int x, y, z;
+};
+
+struct odat {
+  char name[32];
+  int vdat_id;
+  int cdat_idx;
+  int hitbox;
+  struct root root;
+  struct ref* refp; /* pointer to it's ref on ref_list */
+  int num_quads;
+  struct quad quad_list[MAX_QUADS];
+};
+struct odat* odat_buf[PTRS_IN_PAGE];
+int num_odats = 0;
+int curr_max_odats = PTRS_IN_PAGE;
+
+/* A framesheet is a grouping of animation frames in
+   a single direction (N,W,S,E) */
+struct framesheet {
+  int width;
+  int height;
+  int num_frames;
+  void* frames[MAX_FRAMES];
+};
+
+/* A model is a collection of framesheets for every
+   direction (N,W,S,E,NW,NE,SW,SE)*/
+/* NAMED spritesheet */
+struct model {
+  char name[32];
+  struct framesheet spritesheet[8]; //one for each
+};
+
+/* Vdat: Vdats are the video data of each object. They can not be
+   created as a stand alone object (because they consist solely
+   of animation information and not the skeleton on which the
+   animation manipulates). Vdats have a list of models for every
+   animation that the vdats odat can do for that vdat*/
+struct vdat {
+  struct odat* creator; //pointer to odat that made this vdat
+  int num_models;
+  struct model model_list[MAX_MODELS];
+};
+
+struct vdat* vdat_buf[PTRS_IN_PAGE];
+int num_vdats = 0;
+int curr_max_vdats = PTRS_IN_PAGE;
+
+
+/* The initalization function of the IR. Mallocs the
+   first c/v/odat and the first links and refs and
+   inits the cdat_stack */
+void
+ir_init()
+{
+
+  /* Init root cdat and stack */
+  char root[4] = "root";
+
+  cdat_buf[num_cdats] = (struct cdat*) malloc(sizeof(struct cdat) );
+  cdat_buf[num_cdats]->idx = 0;
+  memmove(cdat_buf[num_cdats]->name, root, 4);
+
+  cdat_stackp = cdat_stack;
+  *cdat_stackp = cdat_buf[num_cdats++];
+
+  /* Init first odat */
+  if( (CURR_ODAT = (struct odat*) malloc(sizeof(struct odat))) == NULL)
+    perror("malloc first odat failed");
+
+  /* init first vdat*/
+  if( (CURR_VDAT = (struct vdat*) malloc(sizeof(struct vdat))) == NULL)
+    perror("malloc first vdat failed");
+
+  /* Init first ref */
+  if( (CURR_REF = (struct ref*)  malloc(sizeof(struct ref))) == NULL)
+    perror("malloc first ref failed");
+
+  /* Init first link */
+  if( (CURR_LINK = (struct link*) malloc(sizeof(struct link))) == NULL)
+    perror("malloc first link failed");
+
+  /* Init first post */
+  if( (CURR_POST = (struct ref*) malloc(sizeof(struct ref))) == NULL)
+    perror("malloc first post failed");
+}
+
+//TODO: FREE MEMORY!
+void
+malloc_cdat()
+{
+  if(curr_max_cdats <= num_cdats)
+    { if( (realloc((void*) cdat_buf, PTRS_IN_PAGE * 4)) == NULL)
+      perror("realloc cdat_buf failed");
+      curr_max_cdats += PTRS_IN_PAGE;
+      if( (realloc( (void*) cdat_stack, PTRS_IN_PAGE * 4)) == NULL) //increase cdat_stack also
+        perror("realloc cdat_stack failed");
+    }
+  if( (cdat_buf[num_cdats] = (struct cdat*) malloc(sizeof (struct cdat)) ) == NULL )
+    perror("malloc cdat failed");
+
+
+}
+
+/* Dynamically allocate memory for a class data structure,
+   or cdat, after a class has been identified in a grammar.
+   We also create a stack of class pointers so that
+   we can access the cdat during processing of that
+   cdats sets and elements, a requirement because the
+   nature of recursive classes prevents us from accessing
+   the cdat based on the previous index into cdat_buf,
+   which is a list of all allocated cdats*/
+void
+push_cdat
+( char* name
+)
+{
+  malloc_cdat();
+
+  memmove(cdat_buf[num_cdats]->name, name, 32);
+  cdat_buf[num_cdats]->idx = num_cdats;
+
+  /* Set the cdat as a class of the previous cdat */
+  (*cdat_stackp)->class_list[(*cdat_stackp)->num_classes++] = cdat_buf[num_cdats];
+
+  /* Push the cdat onto the cdat_stack */
+  *++cdat_stackp = cdat_buf[num_cdats++];
+
+}
+
+void
+pop_cdat
+()
+{
+  *cdat_stackp = NULL;
+  cdat_stackp--;
+}
+
+void
+inc_posts
+()
+{
+  num_posts++;
+  if(num_posts >= curr_max_posts)
+    { if( (realloc((void*) post_buf, PTRS_IN_PAGE * 4)) == NULL)
+        perror("realloc post_buf failed");
+      curr_max_posts += PTRS_IN_PAGE;
+    }
+  if( (CURR_POST = (struct ref*) malloc(sizeof (struct ref))) == NULL)
+    perror("malloc post failed");
+
+}
+void
+inc_odat
+()
+{
+  num_odats++;
+  if(num_odats >= curr_max_odats)
+    { if( (realloc((void*) odat_buf, PTRS_IN_PAGE * 4)) == NULL)
+        perror("realloc odat_buf failed");
+      curr_max_odats += PTRS_IN_PAGE;
+    }
+  if( (CURR_ODAT = (struct odat*) malloc(sizeof (struct odat))) == NULL)
+    perror("malloc odat failed");
+
+}
+
+void
+inc_vdat
+()
+{
+  num_vdats++;
+  if(num_vdats >= curr_max_vdats)
+    { if( (realloc((void*) vdat_buf, PTRS_IN_PAGE * 4)) == NULL)
+        perror("realloc vdat_buf failed");
+      curr_max_vdats += PTRS_IN_PAGE;
+    }
+  if((CURR_VDAT = (struct vdat*) malloc(sizeof (struct vdat))) == NULL)
+     perror("malloc vdat failed");
+
+}
+
+void
+inc_link
+()
+{
+  num_links++;
+  if(num_links >= curr_max_links)
+    { if( (realloc((void*) link_buf, PTRS_IN_PAGE * 4)) == NULL)
+        perror("realloc vdat_buf failed");
+      curr_max_links += PTRS_IN_PAGE;
+    }
+  if((CURR_LINK = (struct link*) malloc(sizeof (struct link))) == NULL)
+      perror("malloc link failed");
+}
+
+void
+inc_ref
+()
+{
+
+  if(num_refs % 16 == 0)
+    { CURR_POST = CURR_REF;
+      inc_posts();
+    }
+
+  num_refs++;
+  if(num_refs >= curr_max_refs)
+    { if( (realloc((void*) ref_buf, PTRS_IN_PAGE * 4)) == NULL)
+        perror("realloc ref_buf failed");
+      curr_max_refs += PTRS_IN_PAGE;
+    }
+  if((CURR_REF = (struct ref*) malloc(sizeof (struct ref))) == NULL)
+    perror("malloc ref failed");
+}
+/* Called in the reduction of a set. While both odats (eles and sets)
+   have identical label terminals, we are unable to give a single grammatical rule
+   for both due to how we allocate odats in the odat buf. Due to the
+   nature of bottom up parsing, all the elements will be inserted into the
+   odat_buf first, and then the set that contains these element is inserted. Since
+   the sets label comes before the element list in the grammar, we would be giving an element
+   a set label in its respective odat, which would then be replaced by the
+   elements label. Instead, we store the label in the sets representation inside
+   CURR_CDAT and after we are done parsing the element_list and know that the CURR_ODAT
+   is the set, we populate the sets label members in CURR_ODAT with the values we stored
+   previously in CURR_CDAT. */
+
+void
+insert_set_label
+( char* name,
+  uint64_t ref_id
+)
+{
+  memmove(CURR_CDAT->CURR_SET.name,name,32);
+  memmove(&CURR_CDAT->CURR_SET.ref_id,&ref_id,64);
+
+}
+void
+insert_set_olink
+( uint64_t ref_id
+)
+{
+  CURR_CDAT->CURR_SET.cdat_idx = CURR_CDAT->idx;
+  CURR_CDAT->CURR_SET.ref_id = ref_id; /* Will be resolved to offset
+                                          when link is processed */
+  CURR_LINK->type = 1;
+  CURR_LINK->link_t.olink.ref_id = ref_id;
+  CURR_LINK->cdat_idx = CURR_CDAT->idx;
+  CURR_LINK->set_idx = CURR_CDAT->num_sets++;
+  CURR_LINK->ele_idx = -1;
+
+  inc_link();
+}
+
+void
+insert_set_vlink
+( uint64_t ref_id,
+  char* anim_name
+)
+{
+  /* Insert vlink into link_stack so that it gets processed at
+     output time */
+  CURR_LINK->cdat_idx = CURR_CDAT->idx;
+  CURR_LINK->set_idx = CURR_CDAT->num_sets;
+  CURR_LINK->type = 2;
+  CURR_LINK->link_t.vlink.ref_id = ref_id;
+  memmove(CURR_LINK->link_t.vlink.anim_name, anim_name, 32);
+
+
+}
+
+void
+insert_set_svlink
+( uint64_t ref_id
+)
+{
+
+  /* Insert vlink into link_stack so that it gets processed at
+     output time */
+  CURR_LINK->cdat_idx = CURR_CDAT->idx;
+  CURR_LINK->set_idx = CURR_CDAT->num_sets;
+  CURR_LINK->type = 3;
+  CURR_LINK->link_t.svlink.ref_id = ref_id;
+
+}
+
+/* At the point of reducing to a set, most of the
+   sets odat information has already been populated
+   during the reduction of its right hand side
+   non terminals (hitbox, root, quad_list). */
+void
+insert_set
+()
+{
+  uint64_t ref_id;
+
+  ref_id = CURR_CDAT->CURR_SET.ref_id;
+
+  CURR_CDAT->CURR_SET.cdat_idx = CURR_CDAT->idx;
+  memmove(CURR_ODAT->name, CURR_CDAT->CURR_SET.name, 32);
+  CURR_CDAT->num_sets++;
+
+  CURR_ODAT->cdat_idx = CURR_CDAT->idx;
+  CURR_ODAT->refp = CURR_REF;
+
+
+  CURR_REF->lastref = PREV_REF;
+  PREV_REF->nextref = CURR_REF;
+  CURR_REF->odatp = CURR_ODAT;
+
+
+  if(ref_id == -1) /* user did not define a ref_id so */
+    { ref_id = ss_ref_id;
+      ss_ref_id++;
+    }
+
+  CURR_REF->ref_id = ref_id;
+
+  inc_ref();
+  inc_odat();
+}
+/* Created as a seperate function, instead of setting the ODATS vdat_id and
+   calling inc_vdat() inside of insert_set(), to account for the set reduction
+   where a vdat is not created (o/v/svlinks). Because insert_set/ele is always
+   called before insert_vdat, and thus increments the CURR_ODAT to be the next
+   ODAT to be populated, insert_vdat() targets the last ODAT that was populated,
+   via PREV_ODAT. */
+
+void
+insert_vdat
+()
+{
+  PREV_ODAT->vdat_id = num_vdats; //NULL for vlink, svlink
+  inc_vdat();
+}
+
+/* Populates both the odat name and ref_id
+   for element. */
+void
+insert_ele_label
+( char* name,
+  uint64_t ref_id
+)
+{
+  memmove(CURR_CDAT->CURR_SET.CURR_ELE.name, name, 32);
+  memmove(&CURR_CDAT->CURR_SET.ele_list[CURR_CDAT->CURR_SET.ref_id].ref_id, &ref_id, 64);
+}
+
+void
+insert_ele_olink
+( uint64_t ref_id
+)
+{
+  CURR_CDAT->CURR_SET.CURR_ELE.cdat_idx = CURR_CDAT->idx;
+  CURR_CDAT->CURR_SET.CURR_ELE.ref_id = ref_id; /* Will be resolved to offset
+                                                   when link is processed */
+  CURR_LINK->type = 1;
+  CURR_LINK->link_t.olink.ref_id = ref_id;
+  CURR_LINK->cdat_idx = CURR_CDAT->idx;
+  CURR_LINK->set_idx = CURR_CDAT->num_sets++;
+  CURR_LINK->ele_idx = CURR_CDAT->CURR_SET.num_ele++;
+
+}
+
+void
+insert_ele_vlink
+( uint64_t ref_id,
+  char* anim_name
+)
+{
+
+  /* Insert vlink into link_stack so that it gets processed at
+     output time */
+  CURR_LINK->cdat_idx = CURR_CDAT->idx;
+  CURR_LINK->type = 2;
+  CURR_LINK->set_idx = CURR_CDAT->num_sets;
+  CURR_LINK->ele_idx = CURR_CDAT->CURR_SET.num_ele;
+  CURR_LINK->link_t.vlink.ref_id = ref_id;
+  memmove(CURR_LINK->link_t.vlink.anim_name, anim_name, 32);
+
+}
+
+void
+insert_ele_svlink
+( uint64_t ref_id
+)
+{
+
+  CURR_LINK->cdat_idx = CURR_CDAT->idx;
+  CURR_LINK->type = 3;
+  CURR_LINK->set_idx = CURR_CDAT->num_sets;
+  CURR_LINK->ele_idx = CURR_CDAT->CURR_SET.num_ele;
+  CURR_LINK->link_t.svlink.ref_id = ref_id;
+
+
+}
+
+//Insert element into odat_buf and cdatpages
+void
+insert_ele()
+{
+  uint64_t ref_id;
+
+  ref_id = CURR_CDAT->CURR_SET.CURR_ELE.ref_id;
+
+  CURR_CDAT->CURR_SET.CURR_ELE.cdat_idx = CURR_CDAT->idx;
+  memmove(CURR_ODAT->name,CURR_CDAT->CURR_SET.CURR_ELE.name, 32);
+  CURR_CDAT->CURR_SET.num_ele++;
+
+  CURR_ODAT->cdat_idx = CURR_CDAT->idx;
+  CURR_ODAT->refp = CURR_REF;
+
+  if(ref_id == -1) /* user did not define a ref_id so */
+    { ref_id = ss_ref_id;
+      ss_ref_id++;
+    }
+
+  CURR_REF->ref_id = ref_id;
+
+  inc_odat();
+  inc_ref();
+
+}
+
+void
+insert_framesheet
+( char direction,
+  char* name,
+  uint64_t ref_id,
+  int height ,
+  int width,
+  int num_frames
+)
+{
+  CURR_VDAT->CURR_MODEL.spritesheet[(int)direction].height = height;
+  CURR_VDAT->CURR_MODEL.spritesheet[(int)direction].width = width;
+  CURR_VDAT->CURR_MODEL.spritesheet[(int)direction].num_frames = num_frames;
+  CURR_VDAT->num_models++;
+}
+
+void
+insert_quad
+( int x,
+  int y,
+  int z,
+  uint64_t ref_id
+)
+#define CURR_QUAD (CURR_ODAT->quad_list[CURR_ODAT->num_quads])
+{
+  CURR_QUAD.x = x;
+  CURR_QUAD.y = y;
+  CURR_QUAD.z = z;
+  CURR_QUAD.ref_id = ref_id;
+  CURR_ODAT->num_quads++;
+}
+
+/* Inserting the hitbox into the set
+   odat. Elements that don't have
+   a hitbox will use the sets root. */
+void
+insert_hitbox
+( int hitbox
+)
+{
+  CURR_ODAT->hitbox = hitbox;
+}
+
+/* Inserting the root into the set
+   odat. Elements that don't have
+   a root will use the sets root. */
+void
+insert_root
+( int x,
+  int y,
+  int z
+)
+{
+
+  CURR_ODAT->root.x = x;
+  CURR_ODAT->root.y = y;
+  CURR_ODAT->root.z = z;
+}
+
+void
+insert_frame_pointer
+( char direction,
+  void* frame
+)
+{
+  CURR_VDAT->CURR_MODEL.spritesheet[(int)direction].frames[CURR_VDAT->CURR_MODEL.spritesheet[(int)direction].num_frames++] = frame;
+}
+